How to Calculate the Wood Carbon Footprint of a Building (Print Course)

Are we able to dive deeper into these numbers to find ways to reduce a building’s carbon footprint in meaningful ways? What are the methods used to measure building material carbon footprint and do they tell the whole story? Are there simple tools to assess material choices? This course seeks to address these and other questions by explaining the principal methods and tools that are used to assess carbon footprint in the context of building materials.

It includes a primer on product terminology, including life cycle assessment (LCA), environmental product declarations (EPDs), carbon footprint, embodied carbon, and whole building LCA (WBLCA) tools. It explains how biogenic carbon is treated in standard LCA methodology and dives into the forest side of the equation, explaining basics of the sustainable forestry cycle. This course also highlights some ways to track and assure wood comes from sustainable forests in North America and why demand for wood products supports investment in forest management.

Register

Analysis of Residential Energy Efficiency Upgrades

Making good decisions about improving an existing home's energy efficiency and lowering its energy costs can be challenging for a consumer. Homeowners, builders, contractors, and weatherization agencies have a wide range of energy efficiency upgrades to choose from, each with different benefits and costs.

This course compares the popular upgrades and systems available to help you make the best choice for your projects and is intended to serve as a guide to answer questions about prioritizing energy efficiency investments for existing homes. By closely examining a study commissioned by the Propane Education and Resource Council, the “Analysis of Energy Efficiency Upgrades for Existing Homes,” this course will provide objective information about the most effective measures and/or equipment choices across five climate regions in the United States.

Register

Architectural Stone Veneer: What Works and What Doesn't

As the aesthetics and reliability of manufactured stone veneer (MSV) has improved, the market for this exterior cladding has increased exponentially. In the last five years, manufactured stone has consistently appeared at the top of our annual Cost vs. Value report as a remodeling project with one of the highest ROI. And it’s increasingly common on homes and light commercial offices, hotels.

However, with the increasing market opportunity comes increased risk for contractors installing it. Like any exterior cladding, manufactured stone must be installed over a drainage plane that directs water down and out, away from the wall. How is this done for MSV? What does code require and what changing developments will affect building practices?

View Now

Keeping Tradition Alive: Resilient Benefits of Polymeric Exteriors

The session involves a brief discussion of the basic how-and-why of traditional neighborhoods, including iconic platting elements like small front yards and public spaces, and the design of individual units with an eye on the block-face to achieve harmonious streetscapes. This program will touch on various elements of sustainability, Green, OSHA requirements, fire safety, wind load, and other general code matters associated with vinyl siding and trim.

Register

Resilient and Sustainable Brick: Another Look at a Time-Honored Material

Brick is a resilient and sustainable material used in high-performance buildings, a key aspect of sustainable design. Sustainable design considers the health and well-being of building occupants and the concept of resilience, which is to withstand extreme weather events, then quickly repair and re-occupy.


The learning objectives explore the age old material, which has gained traction in resilient design and discusses how buildings constructed of the material provide occupant comfort in terms of thermal, acoustic, and non-VOC emissions.

Register

Performance and Design Benefits of Today's High-Performance Exterior Insulation and Finish Systems (EIFS) with Drainage

A high-performance building enclosure, such as one clad with EIFS with Drainage, provides protection against the elements, contributes to energy efficiency, and is a means to protect the health and well-being of occupants.


This course will cover the performance and design benefits of modern EIFS with Drainage systems, explaining how they have evolved from the first EIFS barrier system into a single-source solution for exterior wall cladding that provides a number of benefits, including Continuous Insulation, compared to other cladding products. EIFS with Drainage also offers unparalleled design flexibility and adaptability.

Register

Propane and Building Design for Commercial Businesses

Architects, engineers, developers, and facilities managers have numerous choices when determining fuel sources for commercial buildings, whether those choices involve the practicalities of space and water heating, the aesthetics of fireplaces, fire pits, and outdoor lighting, or the functionalities of building site energy needs.

Combined with these choices is the ever-increasing need to build and plan not only cost-effectively, but with sustainability in mind. This course will help specifiers compare the advantages and disadvantages of a variety of fuel sources and storage options, as well as examining the flexibility and reliability of propane, so that they can more readily determine which fuel source best meets the needs of individual commercial projects.

Register

Designing Beneficial Spaces for Living, Working and Well-being (Print Course)

It’s a common human reaction; we turn to nature in uncertain times. Nature nurtures, as they say. With the 2020 global pandemic and the limited access to the outdoors it has meant for many, people are looking at their surroundings with new appreciation – and an increased desire for buildings that help them feel good as they spend more time indoors.

While we know that good architecture doesn’t guarantee good health, evidence is growing that a well-designed building can lead to an improved overall sense of well-being for occupants. And, since wood has a natural connection with nature, there is increasing evidence that wood can contribute to the well-being of building occupants when it is left where it can be seen and even smelled. This CEU explores the trend towards architecture designed to improve the well-being of building occupants.

Register

Fire and Sound Rated Building Joints & the Effects of Structural Movement

This course will compare and contrast methods of preventing fire, smoke, and sound passage within/between wall assemblies. We'll explore different types of structural movement that may occur and the impact to building components and their connections over time. Next, we will examine how movement impacts interior finishes and identify solutions, and the steps that must be taken to prevent damage from movement to building components. By the end of the course, the learner will be able to make more informed decisions in the marketplace of fire and sound rated solutions designed for wall joints.

Register

The Role of Wood-Plastic Composite Cladding in Resilient Design

This On Demand CEU is a recorded presentation from a previously live webinar event. Buildings must be designed to stand up to their natural environment, including high winds, heavy rain events, and freeze / thaw cycles. Increasingly, building systems must also have a positive impact on a building in case of a catastrophic event, such as potential natural disasters. Wood-plastic composite cladding is a great alternative for constructing resilient and sustainable commercial buildings.


The material is highly durable with performance attributes that equate to a longer-lasting, more resilient product than alternative cladding materials. This course will cover the principles of resilient design, the importance of material durability and high performance when specifying resilient materials, and how wood-plastic composite cladding contributes to resilient building design.

Register